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Abstract 

In this work the introduction of generalized A,B,C,D interaction-round-a-face model invariants 
related to composite braid group representations will be proposed. The invariant polynomials are 
obtained in the framework of Witten's Chern-Simons theory summarizing recent works on link 
invariants. The primary intention is to present explicitly neglected results in the latter area and to 
outline in a pedagogical way the computation of a variety of known and new invariants. The.close 
relationship of the topological interpretation of link invariants and the notion of generalized knot 
polynomials derived from integrable models in statistical mechanics is emphasized. 
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I. Introduction 

In recent years several different approaches in knot theory have emerged. Connections 

to a variety of  problems in mathematics and mathematical physics appeared as a conse- 

quence [ 1 ]. 
In order to put the present work in an appropriate context, a brief review of  the de- 

velopment of modem knot theory will be given. A first relationship between polynomial 

invariants of  links and statistical mechanics was already implicitly contained in the pio- 

neering paper of  Jones [2], where Jones introduced his famous polynomial via a study of  

certain finite-dimensional von Neumann algebras. This implicit relationship was made ex- 
plicit for the first time by Kauffman [3,4] computing a partition function from the knot or 

link diagrams. Soon after generalizations were developed, especially the HOMFLY [5] and 

Kauffman polynomial [6], giving rise to more powerful invariants. 
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The discovery of a new intimate connection between knot theory and statistical mechan- 
ics was established independently by Jones [7], Wadati et al. [8] and Turaev [9], yielding 
invariants with skein relations of higher order related to solutions of the Yang-Baxter equa- 
tion. Considering exactly solvable models with Lie algebra symmetry of Cartan's type 
An-l, Bn, Cn and Dn, the A,B,C,D interaction-round-a-face (IRF) model invariants [8] 
were introduced. Similarly hierarchies of N-vertex model invariants and their two-variable 
generalizations corresponding to a composite braid group representation were developed. 
Both the A-IRF-model invariant and the extended two-vertex-model invariant represent a 
HOMFLY polynomial. 

The consideration of state sum models related to the fundamental representation of 
SU(n) by Kauffman [10] engendered a new valuable viewpoint of link invariants. For 
the more complicated examples of higher-dimensional representations, the extension was 
made by introducing the annihilation diagrams for the type of Akutsu-Wadati's polynomial 
calculations [11-14] emphasizing once more the close relationship between the scatter- 
ing picture, the Yang-Baxter equation and the associated state sum models. Furthermore 
Li and Ge calculated link invariants for some non-standard representations of the braid 
group [ 15,16]. 

A remarkable renaissance in the interaction of knot theory and mathematical physics 
originated in obtaining invariant polynomials in the framework of Witten's Chern-Simons 
topological gauge theory. In most of the previous work in knot theory the evaluation of the 
invariants is based on two-dimensional (2D) projections of links, or algebraic approaches. 
However, knots are living intrinsically in three dimensions and so a three-dimensional 
definition was desirable. It was Witten who provided the answer in his celebrated paper [ 17] 
by describing knot polynomials as vacuum expectation values of Wilson line operators in 

a (2÷l )D quantum field theory based on the pure Chern-Simons (CS) action. Topological 
surgery then allowed a study of knot invariants in an arbitrary three-manifold. Besides its 
mathematical advantages CS theory also provides a unifying 3D viewpoint for ( I+ I )D  
conformal field theory [ 17-19] as well as (2÷I)D quantum gravity [20]. 

Witten's derivation of link invariants considers monodromy operations of braid matrices 
related to the fundamental representations of Lie groups of Cartan's type An-I. Using the 
Lie group SU(n), the HOMFLY (n 6 N) and Jones Polynomial (n = 2) are obtained, 
respectively. As a consequence generalizations of Witten's theory were proposed succes- 
sively. Applying the theory to the classical Lie groups of Cartan's classification An-l, Bn, 
Cn and D n in fundamental representation, generalized skein relations were deduced by 
similar methods [21-26], implying an inherent 3D introduction of the A,B,C,D-IRF-model 
invariants of Akutsu et al. [22-24]. Kauffman polynomials correspond to SO(n) Chern- 
Simons theory. The compact simple Lie algebras /~6,7,8, F4 and G2 were examined by 
Hayashi [26] and Ge et al. [22]. Furthermore the theory was extended to the supersym- 
metric Lie groups SU(nln t) and OSp(nl2n') in fundamental representation [25] and the 
non-standard invariants of Li and Ge [24]. 

The generalization of Witten's Chern-Simons theory to higher-dimensional 
representations such as the spin-s, i.e. the composite representation, especially for SU(2), 
generated a new useful viewpoint of knot theory suggesting the possibility to define the 
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N = 2s + 1 vertex-model invariants by quantum field theoretical means [22-24,27,28]. 
Following Govindarajan et al. the method can be persued to multicolored links where dif- 
ferent representations of SU(2) [29] or SU(n) [30] are placed on the component knots. 
Unfortunately for multicolored links the corresponding generalized Alexander-Conway 
relations do not admit recursive solutions in general and new direct methods to obtain the 
invariants had to be developed [29]. The general properties of universal link polynomials 
for a generic real simple Lie algebra were examined in detail by Guadagnini [31 ]. Recently 
Guadagnini and Pilo [32,33] achieved to explore far-reaching consequences for SU(3) 
CS theory using in particular composite Wilson line operators of multicolored links. Isidro 
et al. [27] and Govindarajan [34] have also studied invariants for toral knots from minimal 
conformal models. 

The present approach proposes to extend Witten's interpretation of link invariants to 
higher-dimensional composite representations of arbitrary compact semi-simple Lie groups. 
In the same manner as the composite braid group analysis generalizes the N-vertex polyno- 
mials using Yang-Baxter state models, topological field theory may engender generalized 
or composite A,B,C,D-IRF-model invariants. Hereby the topological derivation is of par- 
ticular importance since the well-known fusion method to obtain composite braid group 
operators of Wadati et al. [8,11 ] is applicable only for vertex or 1RF models with quadratic 
minimal polynomials such as the IRF models associated with SU(n) [35]. This implies that 
the composite link polynomials of type B,,, Cn o r  D n with cubic braid group reduction rela- 
tions are new. The invariants depending on the gauge group G and spin-s will be calculated 
explicitly providing a possibility to classify the previously found vertex- and IRF-model 
invariants. While Witten's interpretation is a 3D quantum field theoretical (QFT) treatment 
of Jones' original approach related to a Markov trace, the present derivation establishes a 
3D QFT version of invariants derived from generalized Ocneanu traces. 

The paper is organized as follows: Section 2 will review the composite link polynomial 

construction of Wadati et al. [8,11 ], Witten CS theory [ 17] and the derivation of A,B,C,D- 
IRF-model invariants [21-26] will be summarized in Section 3. In Section 4 the topological 
approach will be extended to composite invariants. The paper concludes with an outlook to 

a corresponding quantum group interpretation in Section 5. 

2. Composite link invariants 

Wadati et al. [8,11] presented a general prescription to construct a representation of a 
braid group/3k from the Boltzmann weights of a solvable model satisfying the Yang-Baxter 
relation [8]. A sequence of solvable vertex- or IRF-models with quadratic minimal poly- 
nomials and SU (n) symmetries generated new braid group representations. The choice of 
associated Markov traces enabled the construction of new hierarchies of link polynomials. 
Starting from the generators {gi } of the braid group/~ the composite braid group operators 
{Gi} w e r e  obtained using symmetry projectors P. A composite string is formed by com- 
bining m strings and attaching a projector P at each end (Fig. 1). This process known as 
fusion procedure corresponds to the construction of higher spin S-matrices from lower spin 
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i i+ l  i + N - 2  i i+l  i + N - 2  im im+l  
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Fig. 1. The composite string and corresponding braid group representation. 

S-matrices [36]. For example, from a pair of spin-½ particles one can form two composite 
particles with spin 0 and 1, respectively. The projector Pi is assigned to select the spin 
s = ½m, where s is related to the state number N of the N-vertex model by 

s = ½ ( N - 1 )  ---- ½m. (1) 

Preparing k sets of m strings and introducing an opera tor  g~J) (cf. [8]), 

g~J) = g i m + l - j g i m + Z - j  " " " g ( i + l ) m - j  ( j  = 1 . . . . .  N - 1), (2) 

the generators { G i  } of the composite braid group B~ sl are defined by 

,-,(N) . ,p(N) g { l ) g ~ 2 )  . .  g~N-1) p(N) p(N) 
G i  = r ( i_ l )m~_  . im+l  " " ( i - 1 ) m + l "  im+l"  (3) 

The projectors Pi (u) may be evaluated explicitly for solvable vertex- and IRF-models us- 
ing algebraic calculations [8] or conformal field theory (cf. Section 4). The generators 
G1 . . . . .  G k - 1  satisfy the defining relation of the braid group. Consequently following 
Wadati et al. [8,11 ], a generalized Ocneanu trace was introduced: 

@[s](a ) _ @(a) a ~ B~ s]. (4) 
[~(pj)]k' 

7t Is] ( • ) satisfies the Markov properties leading to the well-known Akutsu-Wadati com- 
posite (two-variable) invafiants 

Ot[w s] = (-ZZ)-(k-I)/2(Z/Z)e(A)/2~[S](A), A ~ B~ s], (5) 

with the abbreviations 

to ~_ @(gJ) , Z ---- ~[S](Gj), Z =-- @IS](G~-'). (6) 

e(A) is as usually the exponent sum of the generators in B~ s]. 
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al a l ~ R  a2 a2 
a3 a3 
a4 a4 

ML MR 

ML --> X E HL MR--+ ~ E T-LR L = U U L _  

Fig. 2. The three-manifold M containing the link L is cut into a simple piece M R and a complicated piece M L . 

The most basic gauge invariant functional O(A) to consider is the Wilson line operator 

O(A) ~ H WRi(Ci) ~- I-I  TrRi e e x p f  A, 
i i Ci 

(14) 

where P exp fG A denotes the holonomy around the component Ci and P is the path 
ordering operator. 

Following Witten's approach ZC,R (M, L) can be evaluated employing an algorithm for 
untangling knots. The link L is embedded in a three-manifold M in such a way that one 
crossing remains in a part MR and the rest of the link is located in the part ML. The manifold 
M is the connected sum of the two pieces MR and ML joined along a two-sphere S 2 with 
four marked points al . . . . .  a4 combined by two Wilson lines as illustrated in Fig. 2. 

The link represented by Wilson lines with corresponding representations R and R t there 
exist physical Hilbert spaces 7-(R and 7-(L associated with the boundaries of MR and ML. 
According to Witten [ 17] the Hilbert spaces are of dimension N if the direct product of the 
irreducible representation R decomposes into N distinct irreducible representations (IR) 
of G: 

N 

R ® R  = ~ E i .  (15) 
i-=l 

Supposing that )C and ~ are the bases of the Hilbert spaces 7-/m and 7-/R, respectively, then 
the partition function is obtained through the contraction 

ZG,R(M,L) = (XIaP). (16) 
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X • 7-[C 0 E 7-~ R I / f l e  J-IX I 02 • 7"~X 2 ON • ~'~XN 
L_ L0 L+ L(N_I) + 
0/_ O/0 Ot+ O((N-  I)+ 

Fig:. 3. In order to obtain skein relations the three-manifold M R is replaced by the manifolds Xi (i = I . . . . .  N ). 

The dimension of the Hilbert spaces being N, any N + 1 vectors obey a relation of linear 
dependence of the form 

0l 0 + a l l / e  I ~t_ . . .  q_OiNO N = O. ( 1 7 )  

The well-known method (cf. [17]) to get additional vectors in 7-[ is to replace MR (in 
Fig. 2) by any other three-manifolds Xi (i = 1 . . . . .  N)  with same boundary and suitable 

strings in Xi and the Feynman integral will generate new vectors in 7/. Choosing the 

string configurations of the usual crossing types L_,  L0, L+ . . . . .  L(N-I)+ (cf. Fig. 3) the 
existence of skein relations is deduced from the properties of the partition function. The 

inner product of (17) with (XI yields 

(X[0) q-otl (X[01} +""-~-OlN (XlOu} = 0, (18) 

and implies a higher-dimensional skein relation of order d = N - 1 of the form 

o~-ZG,R( M,  L _  ) + uoZG,R( M,  LO) + ~+ ZG,R(M,  L+ ) 

+" " • + ~(N-I )+ZG,R(  M,  L(N-1)+) =0 .  (19) 

The monodromy operation B defined for each Lie group of the various Cartan types can 
be used to generate the vectors 1/r i from 0 [37,38]: 

BJlOi) = I1/fi+j},  B J [ o )  = [Oj} ( j  • Z). (20) 

Following Witten the characteristic equation of the N x N half-twist monodromy matrix 
B can be written as 

N 

H ( B - ~ . i )  = 0. (21) 
i=1 
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The eigenvalues X i can be deduced from the monodromy properties of the four-point 

correlation function for the primary fields in representation R of Wess-Zumino conformal 

field theory on S 2 [37,38]: 

)-i -= (--1) N+i exp[irr(2hR -- hEi)], (22) 

where hR and hEi are the conformal weights of the primary conformal field transform- 
ing as R and El, respectively. Using the dependency relation (17) and the characteristic 

equation (21) acting on liP) with no twists, yields the skein relation coefficients of (19): 

N 
0t_ = ( - 1 )  N H )-i, 

i=1 

N 

Or(N-2)+ : -- E )~i, 
i=1 

0t(N_l) + m= 1. 

(23) 

In order to reach agreement with the notation used in knot literature employing standard 

framing, the Wilson lines in the manifold Xj must be adjusted by j-fold Dehn twists [17]. 

This imposes a subsequent multiplication of the coefficients or j+ by e x p [ - j : r i h e ]  (j  ---- 
0 . . . . .  N - 1), respectively. 

According to Govindarajan [29] for links obtained as closure of braids made from two 
strands carrying the same representation R of G = SU(n), the invariants may be evaluated 
explicitly without the necessity of solving recursive skein relations using 

N 
ZSU(n),R(M, Lj+) : E ( d i m q  Ei) X[ 

i=1 
(24) 

with the q-dimension of the IR Ei. 
Let Cv be the quadratic Casimir operator of the adjoint representation related to the dual 

Coxeter number of the selected Lie group. Then the usual q variable substitution 

2rri ] 
q = exp [ k - - ~ v J  (25) 

imposes simultaneously the deformation parameter of quantum groups related to primary 
fields of Wess-Zumino conformal fields. 

Employing now the fundamental representation R of the semi-simple Lie groups of 
Cartan's classification An-l, Bn, Cn or Dn, the theory will engender the A,B,C,D-IRF- 
model invariants. In terms of Young tableaux the decomposition relation reads 
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Table 1 
The  A B C D - I R F - m o d e l  invariants 

131 

Gauge group IRF-model invariant 

A n -  1 0"_ qn 
0"0 qn /2-  I/2 _ qn/2+ 1/2 

0"+ - I  

Bn 0"_ _ q  4n 
0"0 q2n _ q3n-I /2  + q3n+l/2 
0:+ q n - l / 2  _ qn+l/2 + q2n 

0'2+ -- 1 

Cn 0"_ q4n+2 
~t 0 q2n+l  _ q3n+2 + q3n+l  

or+ qn _ qn+l 4- q2n+l  

0"2+ -- 1 

Dn 0"_ _q4n-2  
0"0 q2n-1 _ q3n 1 + q3n-2 
0"+ qn- I  _ qn _}_ q2n-I  

0"2+ -- 1 

[] ® []  = ~ • ~ for An-l, 

[] ® [] = ~ G s n  ~ forBn, Cn, Dn, 
(26) 

Fq 
where E i = [ ~ ,  [ ~ ] ,  ~b are antisymmetric, symmetric and scalar representations of G, 
respectively. The conformal weights hEi are calculated (cf. [38,24]) allowing to obtain the 
skein relation coefficients (23) straightforwardly as listed for the convenience of the reader 
in Table 1. 

4. Composite A,B,C,D-IRF-model invariants 

Recalling the fusion procedure to construct higher spin representations by combining 
m = 2s strings it is significant to generalize the theory proposed using higher-dimensional 
representations of the selected gauge group. 

According to Gepner [39] solvable IRF lattice models are in one-to-one correspondence 
with a pair of  a rational conformal field theory (RCFT) and a field in it. As a consequence 
of that one can form for each such pair an associated link invariant [40] performed here by 
means of  topological CS theory. The projection operator of the monodromy matrix Bk at 
the face k on a primary field a is defined by 
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U Bg -- )~i 
p °  = __1-1 (27)  

i=l,i¢a 

The corresponding IRF model may then be introduced via its Boltzmann weights described 

in the usual operator form (cf. [40]): 

N 

Xk(u)  = ~ Pff f a ( u )  (28) 
a= l  

with the functions 

a - I  N - I  

(u) = I - I  sin(gi + u) 1--I sin(gi - u), f a  (29) 
i = 1  i = 1  

where 

1 ~i = ~zr[hEi+l -- hEi]. (30) 

Here u is the spectral parameter which labels the family of  models. Making use of  the 

properties of  RCFT and the IRF models [40], it follows that the invariants so constructed 
always obey the Markov properties, and thus are true link invariants. 

As consequence of that property composite braid group relations may be considered 

using Witten's CS theory with a spin s = I ( N  - 1) representation of the gauge group G. 
This representation is given by Young tableaux containing m = 2s boxes in a row and the 

generalized decomposition relation is given diagrammatically by 

I I .... 
~-- m- /+ l  ~,~--- 2 i - 2 ~  

Rs Rs E 1 E i Em+ 1 

fo r  A n - l ,  

@ ~ =  [ Z ~ [ ~  ~ [ ] . . . I  I I I ~ . . .  ~ I I .... ~z,~ ~ ~ 
I I ...Iml I I  " "11  

,-- m- /+ l  ~ * - -  2 i -2 - -*  

Rs Rs E 1 Ei Em+ 1 

for Bn, Cn, Dn. 

(31) 

Claiming more mathematical exactness especially for the cases of  the special orthogonal 
Lie groups, it is necessary to express the decomposition of the representations in terms 
of Dynkin 's  notation. The Dynkin coefficients ai of the concerned IR Rs, Ei and 4~ are 
{m, 0 . . . . .  0}, {2i - 2, m - i + 1,0 . . . . .  0] and {0 . . . . .  0}, respectively. 

The conformal weights h of the representation F are related to the second Casimir 
operator C r  of this representation as [22] 
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1 
h r  - C r .  

k +  Cv 

133 

(32) 

The highest weight A of the IR under consideration is usually expressed (see, e.g. [411) as 
a sum of the weights li of  the fundamental representation 

A = ~ li ~-i, (33 )  
i 

with the labeling 

n 

An-I  " lk = ln+l + ~--~ ai (1 < k  < n ) ,  
i=k 

Bn 

C .  " 

O n  " 

n - !  

lk -= - ~  -t- ai , 
i=k 

n 

lk = y ~  ai, 
i=k 

n-2 
lk --  a n -  1 -- an 

2 + Z a i "  
i=k 

In+l = -  
1 k 

Z iai, 
n + l i =  I 

(34) 

Considering a convenient normalization of the fundamental weights ~-i [38] the quadratic 
Casimir may be evaluated for arbitrary IR for any semi-simple Lie group leading in particular 

to the results 

1 n + l  

An-1 " CF =- ~ i~=l li(li - 2i), 

1 n 

Bn " CF = ~ i ~  1 li (li + 2n - 2i + 1), 

1 n 

Cn " CF = ~ y ~  li (li + 2n -- 2i + 2), 

1 n 

Dn " C r  = ~ Z li (li + 2n -- 2i). 

(35) 

Accordingly the conformal weights of  the representations corresponding to the concerned 
decomposition (31) are straightforwardly obtained: (i = 1 . . . . .  2s + 1 = 1 . . . . .  m + 1 ) 
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Table 2 
Eigenvalues of the monodromy matrices corresponding to the composite ABCD-IRF-model invariants 

Gauge group Eigenvalues of the composite ABCD-IRF-model invariants (i = 1 . . . . .  m+ 1) 

A n -  I )~ E i (-- l )i +m+ l q -(1/2)i  (i-1)+m(m+n) /2n 

Bn )~ Ei ( -- 1 )i +m + 1 q - i2 /2+i /2+m/2 
~.~ q (m/2) [m +2n - 1 ] 

Cn )',,E i ( - -1) i+m+ l q - i2 /2+i /2+m/2 

~.~b _q(m/2)[m+2n] 

Dn ~. E i (-- 1)i +m+ l q - i2 /2+i /2+m/2 

~ . ~ b  q(rn/2)[m+2n-2] 

A n - 1  : hRs 
1 m ( m  + n ) ( n  - 1) 

k + Cv 2n  

1 i2n  - in  + m ( n  - 2)(m + n - 2) 
hEi = k + Cv n 

1 m 
Bn : hRs --  [m + 2 n  -- 1], 

k + C v  2 

hEi m 

k + C v  
_ _  [i2 _ i + m 2 + 2 m n  - 2m], 

l m 
Cn " hRs - -  [m + 2n], 

k + C v  2 

1 [i  2 - i + m 2 + 2 m n  - m], 
hEi - -  k + Cv 

1 m 
Dn " hR~ --  [m + 2n -- 2], 

k + C v  2 

1 [i2 _ i + m 2 + 2 m n  - 3m]. 
h Ei - -  k + Co 

(36) 

Representing the main result of  this work, the defining skein relations of  composite 

A,B,C,D-IRF-model  invariants (19) may now be determined from the eigenvalues of the 

monodromy matrices ~-i (22) listed in Table 2. Recalling that ho = 0, the eigenvalues related 

to the scalar representation follow from the conformal weights of the spin-s representation 
(cf. (22)). 

Recalling the standard framing adjustment by j - f o l d  Dehn twists of  the Wilson lines 

with the factor exp[--jzrihR~ ] ( j  = 0 . . . . .  N -- 1) mentioned below (23) the skein relation 

coefficients ~_ ,  d0 . . . . .  ~ (N-  1)+ are obtained explicitly. 



O.J. Backofen/Journal of Geometry and Physics 19 (1996) 123-142 135 

The corresponding braid operators of/3~ s] 

Xi(u) 
G/! = lim (37) 

,,-~+~ ~o(u) 

with 

N - I  
97(U) ==- f N  (u) = I--I sin(~'i + u)  (38) 

i=1 

(cf. (28)) obey the Markov properties [40] and the resulting composite A,B,C,D-IRF-model 
invariants are consequently well defined. 

The composite An- 1 model invariants (m An- ! invariants) agree exactly with the original 
defining relations of the generalized N-vertex-model invariants (5) of Wadati et al. [8,11] 
f o r N = 2 s + l  = m + l ( c f . ( 1 ) ) .  

For example in the case ofm = 1 (N = 2) the eigenvalues related to the l An-l invariants 
are 

~.1 = )~Et = _q(l+n)/2n,  "1-2 = ~-E2 = q(l-n)/2n,  (39) 

yielding the HOMFLY polynomial (8), whereas for m _> 2 (N > 3) the well-known skein 
relations of higher order (cf. (9)) may be derived. 

The link polynomials for Lie groups of Cartan's classification Bn, Cn and Dn are new. 
Taking into account that now applies 

N =- m + 2 (40) 

for example in the cases of Bn with m = 2 (spin 1) the eigenvalues given in Table 2 are 
explicitly 

)~1 = XE~ = q l/2, ~.2 = ) ~ E  2 ~ -  _q - I~2 ,  X3 = XE3 = q 5/2, )~4 ----- ~-~b = q2n+l 

(41) 

leading to the skein relation of the new 2Bn link invariant (o9 = qn- l )  

_o96q-23/2 L_ q- og-4[q-2n-19/2 h- q-6 _ q-8 q_ q-9] L0 

q_og-2[_q-2n-4 q_ q-Zn-6 _ q-Zn-7 _}_ q-5/2 _ q 7/2 + q-I  I/Z] L+ 

+og-2[_q-2n-2 _ q-5/2 q_ q-7/2 _ q-I  I/2] L2 + q_ L3 + = 0. (42) 

The generalized A,B,C,D-IRF-model invariants depending on the spin s = ½m pro- 
vide a possibility to classify the previously found two-variable vertex- and the IRF-model 
invariants indicated in Table 3. 

Furthermore the conformity of some important link polynomials derived from integrable 
models of statistical mechanics may be reviewed. The agreement of certain link poly- 
nomials derived from integrable vertex- or IRF-models may be understood recalling the 
Wu-Kadanoff-Wegener transformation [42,43] which indicates the specific relationship of 
Boltzmann weights of both types of models. 
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Table 3 
Classification 
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model of link invariants derived from solvable models of statistical mechanics 

Cartan type An_ 1 
Lie group SU(n = 2) 

Bn Cn Dn 
SU(n) SO(2n + 1) Sp(2n) SO(2n) 

m - - 1  

m ~  

JONES polynomial 
A 1 IRF-model invariant 

2-vertex model invariant 

N = (m + 1)vertex 
model invariants 
Composite A t IRF-model 
invariant 

HOMFLY polynomial 
An- 1 IRF-model invariant 

Composite 2-vertex model 
invariant 

2-var. N = (m + 1) vert. 
model invariants 
Composite A n_ 1 IRF model 
invariant 

B,C,D IRF-MODEL invariant 

Comp. B,C,D IRF-model invariants 

The generalized surgery formula of Witten [17] for the diffeomorphism K of the boundary 

of the corresponding manifold M, 

ZG(J("I, Ri) = y ~  K/ ZG(M, Rj), (43) 
J 

allows to calculate the invariants for a new three-manifold hT/containing a Wilson line in the 

Ri representation from those obtained in the manifold M with a Wilson line of associated 
representation Rj. In the case of,Q = S 3 and M = S 2 x S 1 , K becomes the known modular 

group diffeomorphism S and surgery gives rise to the possibility to evaluate ZG (S 3) from 

ZG ( S 2 x S 1, gj ). ZG ( S 3, L (U i Ri ) ) may be calculated as for example 

ZG(S 3, L(Ri, Rj)) = E SkZG(S2 × S l '  Rk, Rj) ~- Si,j (44) 
k 

yielding Witten's invariant for the unknotted rings 

SR,0 
ZG,R(M, oo) = ZG,R(M , o ) - -  

SO, O 

I q--2CR__q2CR __ i _ i ( _ l ) / + m + l ]  . 
=ZG,R(M,o) ]y~i(_l)i+m+l(q_CEi _qCei) i 

(45) 

Furthermore the change of the orientation of some link components in the case of real 
representations R results in multiplying another factor of q related to the writhe w(k) of 
the knot 

ZG,R(M,L) = qCRw(K)ZG,R(M ,L').  (46) 

Concluding from the analogy with the non-composite case [21], the knot polynomials  for 

closed three braids can be derived directly without using recursive skein relations. 

Certainly, the theory proposed for composite link invariants may be extended to the 

exceptional Lie groups classified by G2,/74, E6,7,8, or applied to arbitrary decomposit ions 
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into irreducible representations. The latter case complies with the generalization of the 
composite string representation with projectors chosen as eigenvectors of the full twist A~ 
(10). The eigenvalues are calculated from the Dynkin coefficients in the form 

o ~  o c  0 o  3 '  

az = q- . (47) 

Following Wadati et al. [8] for example in the case of 3Ai there exist N = m + 1 = 4 
projectors: the symmetrizer, the antisymmetrizer, two projectors with mixed symmetry 
corresponding to the Young tableaux 

respectively. Consequently the generalized invariants so obtained coincide with the extended 
Akutsu-Wadati invariants a~l  given in (11 ). 

It is interesting to observe that the duality relation between SU (N)k and SU (k)u Wess- 
Zumino-Witten models [44,45] is reflected in the link invariants derived by topological 
means as intended here. This may be verified examining, e.g., the respective decomposition 
ot' the representation ~ ]  " 

~ ® ~ = ~  ~ 2 ] @ ~  @ ~ 2 ~  @~S~ @~SI~ forSU(N)k, 

~ ® ~ = ~ ] ~  ~ @ ~ ~ ]  @ ~  @ 2~DS~ @~351 forSU(k)N. 

(48) 

Since the permutation of the monodromy eigenvalues Li, associated with irreducible 
representations Ei, does not lead to new results of the skein relation coefficients (cf. (23)), 
the same link invariants will be obtained for dual decompositions. These results are a 
consequence of the duality properties of the spaces of conformal blocks of SU(N)k and 
SU(k)N correlation functions and their associated braid matrices [45]. 

Observe that the extended version of Witten's Chern-Simons theory implies the possi- 
bility to derive composite invariants of non-standard representations of Li and Ge [15,16]. 
These non-standard representations are sequences of new solutions of the spectral parameter- 
independent Yang-Baxter equation, wherein the coefficients of the Kauffman diagrams 
depend on the possible labelings [13]. According to Li and Ge the eigenvalues of the cor- 
responding monodromy matrices are given by 

~-1 : q, )~2 : _q-1 for An-l, Bn, Cn, Dn, 
)~3 : q-u+l for Bn, 
),3 = -~1 q-U-~ for Cn, 
)~3 = ~l q-U+~ for D,,. 

(49) 

The parameters # and 81 may be calculated from the possible sets of labelings of the dia- 
grammatic Yang-Baxter equation [ 15,16[, providing the possibility to construct composite 
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Table 4 
The invariants of  the non-standard representation 

Gauge group Non-standard invariant 

An- 1 or_ q - 2 ,u 

ot 0 q l - u  _ q - l - , u  

or+ - 1  

Bn a -  _ q  -4,u +4 
c~ 0 q-2/~+2 _ q - 3 # + 4  -I- q - 3 # + 2  
~ +  q - U + 2  _ q - U  + q-2 /z+2 

~t2+ -- 1 

Cn ot _ 61 q -4;~L-4~1 

or0 81 (q - 3 ~ - 3 a 1 - 1  _ q-3~-3,~1+1 _ 61q-2t~-2al  ) 
~ +  q-~Z-~t +1 _ q - ~ - a  t - I  _ 61q-2/z-281 

~2+ - 1 

Dn ~ -  --61q -4/z+4al 
ot 0 81 (q-3/z+3~ 1-1 _ q-3~+331 +1 + 61q-2p.+26j ) 
or+ q - # + a  1 +1 _ q-U+a~ -1  _ 61q-2/z+261 

~2+ - 1 

non-standard invariants by similar means. Note that there exists an interesting agreement 
of the non-standard invariants obtained before and listed in Table 4 (cf. [24]) with some 
composite invariants. For example in the case of B3 for the special set of labelings with 
/z = 3 the invariants turn out to be equivalent to the composite 2 A 1 invariant (or three-vertex 
Akutsu-Wadati invariant) for q = exp[-2rri / (k  + Cv)]. 

Finally one might examine the asymmetrical decomposition relations 

N 

® R' = ~ Ei. (50) R 
i = l  

In this case the eigenvalues of  the monodromy matrices of  RCFT are related to the conformal 
weights as 

)~i : ( - - 1 )  N + i  exp[izr(hR + hR, - h E i ) ] ,  (51) 

and the invariants may be obtained in the same way as indicated above. 

5. Conclusion 

The present report supplies an intrinsically 3D definition of composite A,B,C,D-IRF- 
model invariants in the framework of Witten's topological field theory based on the pure 
Chern-Simons action. The knowledge of the expectation values of  Wilson operators over 
links with arbitrary representation of arbitrary semi-simple Lie groups constitutes a complete 
solution for the non-abelian Chern-Simons theory in three dimensions. The construction 
presented here, while encompassing the known link invariants derived from integrable 
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models of statistical mechanics, provides a generalization of these along with a summary 
of the framework for their construction. The composite invariants obtained and related to 

the fusion procedure of factorized scattering matrices provide a possibility of classification 
fi~r the previously found link invariants showing once more the universality of Witten's 
pioneering work. Using the conventions of this approach the HOMFLY polynomial and 
the two-variable Akutsu-Wadati vertex invariants correspond to the I A n _  I and mA n_l 
composite model invariants, respectively. The generalized invariants related to Lie groups 
of Cartan's classification Bn, Cn or Dn, however, do not have a "classical" precedence. 

Such new invariants with skein relations of higher order are indeed needed in the prob- 
lem of classifying links since two topological links may certainly have identical classifying 
invariants. The most famous example is the Birman pair of two different knots having the 

same Jones polynomial [46]. Furthermore as shown recently by Govindarajan et al. [47] the 
chirality of the two knots 942 and 1071 is not detected by any of the well-known polyno- 
mials, namely Jones, HOMFLY and Kauffman. However, the composite m A n - -  1 invariants 
are indeed sensitive to the chirality of these knots for m > 3, providing a systematic clas- 
sification possibility for the invariants. Higher spin polynomials being progressively more 
powerful emphasizes the importance of the introduction of composite A,B,C,D-IRF-model 
invariants. This appears to be significant when recalling that the problem of classifying link 
invariants is the same as that of classifying conformal field theory since the link invariants 

described here arise from RCFT. 
Moreover the universality of Witten's topological field theory implies a far reaching con- 

sequence for the notion of quantum groups. These are related to certain q-deformations 
UqG of universal enveloping algebras of classical Lie algebras, where q is restricted to be 
the complex root of unity given by (25). Since quantum groups are intimately connected 
with solvable models of statistical mechanics it was possible to establish a close relationship 
between invariants of closed three-manifolds and the quantum enveloping algebras [48-51 ]. 
For example the Jones polynomial is known to be connected with the quantum envelop- 
ping algebra of the Lie algebra s/2(C). In the same way Witten succeeded in deriving the 
corresponding structure coefficients starting only from the general covariance of 3D Chern- 
Simons theory with gauge group SU (2) [ 19], it is essentially possible to generalize Witten's 
approach to arbitrary classical Lie groups as, e.g., in the case of link invariants. This implies 
a partial explanation of the existence of the quantum groups SLq (n), GLq (n), Oq (n) and 
Spq (n) emerging as a unifying structure between integrable 2D field theories, 3D CS gauge 
theory and link invariants. Hereby the quantum symmetry appears as a hidden symmetry 
of Witten's partition function. 

Further generalizations may be reviewed when exploring higher-dimensional irreducible 

representations of the basic classical Lie superalgebras SU(nlnl), OSp(2n ÷ l l2n'), 
0 Sp(212n - 2), O Sp (2n 12nt), G (3) or F (4). The results are of particular interest since it 
is essentially possible to introduce the Boltzmann weights of supersymmetric IRF models 
from the monodromy eigenvalues in analogy with the non-graded case (cf. (28)). 

An alternative 3D variational approach of Cotta-Ramusino et al. [52] allows to compute 
the skein coefficients in the case of G = SU(n) in a large coupling approximation k ~ ~ .  
The method may eventually be extended for arbitrary classical Lie groups. 
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Moreover there is a fundamental relationship between Jones' knot invariants and Vas- 

siliev's knot invariants derived from important concepts of classical topology. The corre- 

sponding connection to more sophisticated invariants still seems to be elusive. 

Finally the reflection of duality properties of link invariants determined from SU(n)k  

and SU (k)n Wess-Zumino-Wit ten  models deserve a further examination. 

In conclusion the derivation of composite link invariants in the framework of Chern-  

Simons topological gauge theory may suggest new promising developments for knot theory 

and the interpretation of quantum groups providing a further small step in the understanding 

of the close relationship between topological field theory, integrable models in statistical 

mechanics and the concept of link invariants. 
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